Sharing of Very Short IBD Segments between Humans, Neandertals, and Denisovans
نویسندگان
چکیده
We analyze the sharing of very short identity by descent (IBD) segments between humans, Neandertals, and Denisovans to gain new insights into their demographic history. Short IBD segments convey information about events far back in time because the shorter IBD segments are, the older they are assumed to be. The identification of short IBD segments becomes possible through next generation sequencing (NGS), which offers high variant density and reports variants of all frequencies. However, only recently HapFABIA has been proposed as the first method for detecting very short IBD segments in NGS data. HapFABIA utilizes rare variants to identify IBD segments with a low false discovery rate. We applied HapFABIA to the 1000 Genomes Project whole genome sequencing data to identify IBD segments that are shared within and between populations. Many IBD segments have to be old since they are shared with Neandertals or Denisovans, which explains their shorter lengths compared to segments that are not shared with these ancient genomes. The Denisova genome most prominently matches IBD segments that are shared by Asians. Many of these segments were found exclusively in Asians and they are longer than segments shared between other continental populations and the Denisova genome. Therefore, we could confirm an introgression from Deniosvans into ancestors of Asians after their migration out of Africa. While Neandertalmatching IBD segments are most often shared by Asians, Europeans share a considerably higher percentage of IBD segments with Neandertals compared to other populations, too. Again, many of these Neandertal-matching IBD segments are found exclusively in Asians, whereas Neandertalmatching IBD segments that are shared by Europeans are often found in other populations, too. Neandertal-matching IBD segments that are shared by Asians or Europeans are longer than those observed in Africans. These IBD segments hint at a gene flow from Neandertals into ancestors of Asians and Europeans after they left Africa. Interestingly, many Neandertaland/or Denisovamatching IBD segments are predominantly observed in Africans — some of them even exclusively. IBD segments shared between Africans and Neandertals or Denisovans are strikingly short, therefore we assume that they are very old. Consequently, we conclude that DNA regions from ancestors of humans, Neandertals, and Denisovans have survived in Africans. As expected, IBD segments on chromosome X are on average longer than IBD segments on the autosomes. Neandertal-matching IBD segments on chromosome X confirm gene flow from Neandertals into ancestors of Asians and Europeans outside Africa that was already found on the autosomes. Interestingly, there is hardly any signal of Denisova introgression on the X chromosome. . CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/003988 doi: bioRxiv preprint first posted online Apr. 7, 2014;
منابع مشابه
IBD Sharing between Africans, Neandertals, and Denisovans
Interbreeding between ancestors of humans and other hominins outside of Africa has been studied intensively, while their common history within Africa still lacks proper attention. However, shedding light on human evolution in this time period about which little is known, is essential for understanding subsequent events outside of Africa. We investigate the genetic relationships of humans, Neand...
متن کاملBetter support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans.
Rogers et al. (1) compare the sharing of derived alleles among the genomes of Africans, non-Africans, a Neandertal, and a Denisovan to infer the demographic history of archaic humans. They estimate that the effective population size (Ne) of Neandertals was ∼15,000 individuals and that Neandertals and Denisovans separated from each other shortly after their ancestor separated from modern humans ...
متن کاملHapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data
Identity by descent (IBD) can be reliably detected for long shared DNA segments, which are found in related individuals. However, many studies contain cohorts of unrelated individuals that share only short IBD segments. New sequencing technologies facilitate identification of short IBD segments through rare variants, which convey more information on IBD than common variants. Current IBD detecti...
متن کاملUsing the neanderthal and denisova genetic data to understand the common MAPT 17q21 inversion in modern humans.
The polymorphic inversion on 17q21, that includes the MAPT gene, represents a unique locus in the human genome characterized by a large region with strong linkage disequilibrium. Two distinct haplotypes, H1 and H2, exist in modern humans, and H1 has been unequivocally related to several neurodegenerative disorders. Recent data indicate that recurrent inversions of this genomic region have occur...
متن کاملNuclear and mitochondrial DNA sequences from two Denisovan individuals.
Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014